Handwritten HW 8

Page 73

20. Let $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, $\mathbf{v}_1 = \begin{bmatrix} -2 \\ 5 \end{bmatrix}$, and $\mathbf{v}_2 = \begin{bmatrix} 7 \\ -3 \end{bmatrix}$, and let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation that maps \mathbf{x} into $x_1\mathbf{v}_1 + x_2\mathbf{v}_2$. Find a matrix A such that $T(\mathbf{x})$ is $A\mathbf{x}$ for each \mathbf{x} .

Solution:

Page 74

22. Mark the statement True or False (T/F). Justify your answer. Every matrix transformation is a linear transformation.

Solution:

24. Mark the statement True or False (T/F). Justify your answer. The codomain of the transformation $\mathbf{x} \mapsto A\mathbf{x}$ is the set of all linear combinations of the columns of A.

Solution:

26. Mark the statement True or False (T/F). Justify your answer. If $T : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation and if **c** is in \mathbb{R}^m , then a uniqueness question is "Is **c** in the range of T?"

Solution:

28. Mark the statement True or False (T/F). Justify your answer. A linear transformation preserves the operations of vector addition and scalar multiplication.

Solution: